MMP Learning Seminar Week 79.

Introduction to

Anti-pluricanonical systems on

Fano varieties.

		. Was te amala	(Hacan - McKeinan, 2006)	
	Im Kil dolina	: Kx is ample a birational map for	m > m/cl)	
/\ Smooth	I'm K x 1 de jines	a sitational map jor	$m \ge m(d)$	
projective of dimension d.				
of dimension d.	Calabi - Yau:	Kx = 0 then K; some m that depend	< ~e0.	
	conjecturally, m	should only depend on	d lopen).	
smooth	, /	/ '	,	
	Fano: - Kv	ample I-m Kxl do	fines a bis map for mamed)	1
terminal	Can we find an	element of 1-mKx	with nice singularities?	/
1 - lc	Can we control ,	n only using d. W	efines a bir map for mamod) With nice singularities?	
		7 0	C Direct 1	
Theorem 1.1	(Effective non-	·vanishing): da	nabural number	
There exists m:	= m(d). such tha	t if X is a Fan	variety of dim d	
with kit sinpular	utres, then the	linear system	-mK×1 ≠ \$.	
furthermore, the	ne linear system	n confains Me	I-m Kx for which	
(X, \frac{1}{m} M)	has le singulant	nes .	all lop discrepancies are $\geq E$.	
Tl /		1. 11 6 -	ı EL.	
			le Fam Variebres)	
Let d be a natu	nal number and	E>o. There m	= m(d, s). such that	
.t V - 1			1 11	
if A is E-Ic	week rano v	variety of dimension) d, then	
l-mKx Jefin	es a birational	map.		
		this condition is		
		- this condidinals	necessary.	

Remark: The outcome of theorem implies that vol(-kx) > $\frac{1}{md}$ Without the E-Ic condition there are examples for which Vol (-Kx) can be arbitrarily small or arbitrarily laype) X Fano variety. regularity of X. reo (X) = max { dim D(X,B) | (X,B) log CT} dim \$ = -1. coreg(X) = dm X - rep(X) - 1corepularity of X. cores $(\mathbb{D}^n) = 0$ $\operatorname{reg}(\mathbb{D}^n) = \dim \mathcal{D}(\mathbb{D}^n, H_{1+n}, H_{n+1}) = h_{-1}$ closer to borre

varieties.

Contains all

torre varieties.

We can produce we cannot produce lop canonical contors using ICT structures. Exceptional Fano Vaneties $d_{im} X = coreg (x)$ Ice with LCT structure

Theorem 1.3. (Boundedness of exceptional Fanos): da natural number.

The class of exceptional Fano varieties of dimension of forms a bounded family.

Conjecture 1.5 (BAB): Let I be a natural number &

E>D. Then the set of E-lc Fano varieties of dimension d

forms a bounded family.

Borisov - Alexeer - Borisov

Theorem 1.4 (Weak BAB): disa natural number, E, 8 > 0.

Consider projective varieties equipped with a boundary B s.t.:

(XIB) is E-1c & of dimension d.

proved this conjecture in dim 2

- · B is big & Kx+B~Ro, and
- the coefficients of B are > S.

Then, the set of such X forms a bounded family.

Theorem 1.6. Assume BAB holds in dimension d-1.

Then there is $V:=V(d,\varepsilon)$ such that if X is an ε -lc weak Fano vanely of dimension d, then $Vol(-K_{\times}) \leq Y$.

In particular, such X are birationally bounded.

Theory of complements: choice of a LCT structure A Q-complement of a variety X is a boundary B with Q-coeff for which (X,B) is le & Kx+B~0. A n - complement of a variety X is a boundary B with Q-coeff for which (X,B) is & n(Kx+B)~o Boundedness of complements of index dividing in.

Existence of bounded complements

Difference of bounded complements Conjecture: Let I be a natural number. There exists n:= nld) satisfying the following. It X is d-dimensional & Q - complemented, then X is N-complemented · Any variety with a LCT structure admits an effective LCT structure

Theorem 1.7 (Boundedness of complements for Fans variebies): Let d be a natural number and R [[0,1] be a finite

set of rational numbers. Then, there exists n, only depending

on d and R, satisfying the following.

Assume (X,B) is a projective pair such that.

- · (X,B) is lop canonical of dimension d,
- Be $\Phi(R)$, that is, $coeff(B) \in \Phi(R) = \{1 \frac{r}{m} | r \in R, m \in \mathbb{Z}_{s}\}$
- · X is of Fano type, and
- · (X,B) is Q-complemented
- Then, there exists an n-complement $Kx+B^+$ of Kx+B
- such that B+> B.

4nfi	- þ	luri ca	anon	ica	3)	yst	e m	s on	F	- ano	Va	rie.	bie	s :				
		he																
	Cro	eating	f	2 mili	25 l	of	nor	n-Kli			s Us	ino	V	olun	ne			
		heory																
>	Th	eon	o j	pener)	aliz	ed	p	રહ્યા ક		()	Χ, E	\$+						
										effe	ec bive				→	posh fan	formet of	war

Sketch of the proof of 1.7:

(X,B) with -(Kx+B) Q - complemented of Jimensian J

coreg (X,B) = Jim X meaning all Q - complements are kib.

In this case the singularibes of (X,B) are [E-Ic]

(Y, Br + (1-E) E)

By ACC for let.

(Y, Br + E) 15 appen Fano type + Q-comp.

(X,B)

Use effective birationality I'e [-m(Kx+B)] the triple

(X, B+I/m) is kit.

(X,B+I) Q - complement which strictly to. divisors with coeff one $(\Upsilon, B_{\Upsilon} + \overline{E} + \Gamma_{\Upsilon})$ Υ again $FT \longrightarrow MDS$ Run - (Kr+Br+E) - MMP. reduces to: i) - (Ky + By + E) by + nef. + KV we can lift the complement from E ii) Ky: By + E = 0 along a fibration Y -> T. prove the existence of a CBF for CY pairs on Fans type morphism.